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Abstract

In this brief thesis, a detailed discussion is made of Linear systems of equations

and their matrix representations. In order to explore its Implementation and

Performance to help us know which method to implement for large n matrices

mainly on computer. In particular, properties of matrices like, norms, factoriza-

tions are given sufficient treatment and explanation for revision purposes. We also

discuss the solution of linear systems in general, leading us to discussion of the

least squares method, the normal equations, the concept of pseudo-inverses. This

eventually leads us to consider the system of square matrices in further detail,

whence we discuss about the Gaussian elimination and LU Factorization, Gaus-

sian elimination with pivoting and the Cholesky method. We also discuss the

computational aspects associated with solving such systems, typically stability

and accuracy of solving and computational cost. Discussion is also made of so-

lution by direct methods and iterative methods, where we discuss suitability and

stability of Gauss-Siedel, Jacobi, Steepest Descent, Method of Conjugate direc-

tions, Method of Conjugate Gradients and finally the Method of Preconditioned

Conjugate Gradients. Several algorithms are discussed, and further, several illus-

trations are also given. Possible directions of further work is pointed out. Proofs

of some theorems and propositions are given and several others are referred to

their original sources. This is to give you, the reader, an effective introduction

into the topic regarding the implementation and the performance of direct and

iterative methods. Hence equipping you with information to tackle them.
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Chapter 1

Introduction

[1](pp.1-32)

A system of m linear equations with n unknowns, where m,n need not be

necessarily equal, can be represented using the matrices in the form of a matrix

equation as

Ax = b (1.1)

Where A represents the entries of all the coefficients of the equations in the form

of an m × n matrix, x represents the variables in the form of an n × 1 column

vector and b represents the m × 1 column vector for the constants on the RHS

of the system of linear equations. Many practical problems could be reduced to

solving a linear system of equations formulated as matrix form.

Though the above said equation seems to be simple to state and understand,

but practical experience shows that there are several complications associated

with the problem. We are considering the case here when n is large and all

computations are done on a computer.

The field of linear algebra, and, in particular, numerical linear algebra, is

a vast field of ongoing research. In this sequel, we concentrate on mainly the

numerical aspects of solving systems. The problem mainly comes from the fact of

using computers, which work on an arithmetic quite different from the one that

we are acquainted with. Methods of solving systems can be stable or unstable

depending on the procedure involved. In addition, more stable methods may be,

at times, more time consuming(high computational cost).

In this thesis, though we discuss general system of equations, our focus will be

square nonsingular systems. This is because, as will be seen, in a general system

of equations, when there are more equations than unknowns, i.e. m > n there is

usually no vector x satisfying Ax = b but in this case it is common to consider

what is called the “least squares solution of Ax = b” which involves finding the

vector x which minimises the 2-norm of Ax − b. We will see that the general
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CHAPTER 1. INTRODUCTION

system of equations, can be reduced by the principle of least squares to a system

of square matrices.

We will focus on both direct and iterative method for solving linear systems.

Though direct methods are accurate and stable, for large sparse(many zero en-

tries in matrices), the computational cost is considerably reduced by iterative

methods. Thus, the discussion will include the direct methods like Gaussian

elimination and Cholesky factorization and also the theory of iterative meth-

ods like Gauss-Siedel, Jacobi, Steepest Descent, Conjugate Directions, Conjugate

Gradients, preconditioned Conjugate Gradients and knowing which one of the

iterative methods are faster. We explore the link between computers and the

concept of stability of an algorithm also. We hope this study makes enables you

to be able to decide on whether to use direct methods or iterative methods and

also give you the ability to be able to possibly know a bit about the conditions

and stability pertaining to its computations before deciding the method to solve

a given set of questions. Effort was made in understanding the material after

reading from different sources and writing in my own words in an attempt to aid

you, the reader,in understanding this topic. Overall you will notice that the main

theme of the thesis is about implementation and performance of both direct and

iterative methods on computers. Mainly the case when n is too large. This is

the main reason why all these topics such as stability, conditioning etc have been

chosen. The main reference throughout the thesis is the book by Trefethen and

Bau(Numerical Linear Algebra) [1]
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Chapter 2

Matrices-Preliminaries

This chapter is important because the definitions here will appear many times

in this thesis. We briefly therefore give here a revision of the definition of these

terms together with some of the basic properties:

Definition 1. The determinant of an n × n matrix A, denoted by det(A) is

defined as

det(A) :=
∑
σ

sgn(σ)a1σ(1)a1σ(2)...anσ(n)

where the summation is over all the permutations σ(1),..., σ(n) of 1, 2, ..., n and

sgn(σ) is the signature of the permutation that is 1 or −1 as σ is even or odd

respectively. [2]

Definition 2. The minor of a matrix is the determinant of submatrix formed by

removing one or more of its rows and columns.

Definition 3. The transpose of the co-factor matrix of a matrix or the adjugate of

the matrix, adj(A) is the matrix of its first minors corresponding to each element

multiplied by (−1)i+j.

Definition 4. The inverse of a matrix, if it exists is unique and determined by

the formula

A−1 =
1

det(A)
(adj(A))

Thus, it is clear that the inverse of a matrix exists iff det(A) 6= 0

Definition 5. A vector x is said to be an eigenvector corresponding to a scalar

λ iff Ax = λx

Note that product and sum of eigenvalues are the determinant and trace(sum

of diagonals) respectively.

Definition 6. The rank of a matrix A is defined as the size of the largest sub-

matrix of A such that the corresponding minor is non zero of A. [2]
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CHAPTER 2. MATRICES-PRELIMINARIES

Definition 7. The rank of a matrix A is also defined to be the number of in-

dependent rows or columns of the matrix, i.e., the largest n such that c1C1 +

c2C2 + . . . + cnCn = 0 =⇒ c1, . . . , cn = 0, where c1, c2 . . . , cn are scalars and

C1, C2, . . . , Cn are column vectors.

For getting the unique solutions to a system of linear equations, the determi-

nant of the matrix A needs to be non-zero or, equivalently, the rank of the matrix

A need to be full, i.e.,n.

Definition 8. An n × n matrix A is said to be symmetric matrix, whenever A

= AT that is, whenever, aij = aji.

Definition 9. An n × n matrix A over the field of complex numbers, C is said

to be hermitian if A∗ = A where ∗ denotes conjugate transpose or adjoint, i.e.,

A∗ = aji

Note that by the spectral theorem, all eigenvalues of a hermitian matrix are

real.

Definition 10. A matrix is positive definite if it is symmetric(hermitian) and all

its eigenvalues are positive and negative definite if all its eigenvalues are negative.

Similarly, a hermitian matrix is positive semidefinite if all its eigenvalues are non-

negative and negative semidefinite if all its eigenvalues are non-positive.

As its a symmetric(hemitian) matrix all the eigenvalues are real, so it makes

sense to talk about them being positive or negative.

Definition 11. The inner product of two n-dimensional vectors or columns of a

matrix x, y, denoted by 〈x, y〉 or x∗y is

x∗y =
n∑
i=1

x̄iyi

where summation is done over the components of product of vectors.

Definition 12. Two vectors x, y are orthogonal iff x ∗ y = 0

A set of mutually orthogonal sets are linearly independent and thus form a

basis of the vector space in which they lie.

Definition 13. A complex n× n matrix is unitary iff A∗A = I. If the matrices

be real, they are said to be orthogonal

Definition 14. A norm of a vector or a matrix, ‖x‖ or ‖A‖, is a real valued

function from the space of n-dimensional vectors or matrices satisfying
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CHAPTER 2. MATRICES-PRELIMINARIES

i)(positivity)

‖x‖ ≥ 0 ‖x‖ = 0 iff x = 0

ii)(triangle inequality)

‖x+ y‖ ≤ ‖x‖+ ‖y‖

iii)(scalability)

‖kx‖ = |k|‖x‖

The notions of convergence and approximations are studied using norms.

The various vector norms are [1](pp.3-11):

i) l1 or (1-norm)-

‖x‖1 =
n∑
i=1

|xi|

ii)l2 or (2-norm)-

‖x‖2 =

(
n∑
i=1

|xi|2
) 1

2

=
√
x∗x

iii)lp or (p-norm)-

‖x‖p =

(
n∑
i=1

|xi|p
) 1

p

=
√
x∗x

iv)l∞ norm-

‖x‖∞ = max1≤n|xi|

Note that the vectors x are of dimension n in the above definitions

The matrix norms induced by vector norms are: ‖A‖p given by:

‖A‖p = sup
x∈Cn x 6=0

‖Ax‖p
‖x‖p

= sup
x∈Cn ‖x‖p=1

‖Ax‖p

Note that the n norm on a diagonal matrix D induced by a vector is equal to

‖D‖n = max1≤n|di|

Similarly, the 1-norm induced by a vector on a matrix A is equal to the

maximum column sum of A and the ∞ norm of a matrix is equal to maximum

row sum of the matrix [3] .

The vector norms and the matrix norm induced by the vector norms satisfy
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CHAPTER 2. MATRICES-PRELIMINARIES

the Holder inequality: For any two vectors x, y

|x∗y| ≤ ‖x‖p‖y‖q

where
1

p
+

1

q
= 1, 1 ≤ p, q ≤ ∞

The Cauchy-Schwarz inequality is the special case of Holder inequality for

p = 2.

The Cauchy-Schwarz inequality is used in several proofs requiring bounding

the norms, especially in stability and conditioning and related areas.

A matrix norm not induced by a vector norm is the Hilbert-Scmidt or the

Frobenius norm, defined by

‖A‖F =

(
n∑
i=1

n∑
j=1

|aij|2
) 1

2

=
√
tr(A∗A) =

√
tr(AA∗)

The Frobenius norm is involved in the results consisting of conditioning and

stability pertaining to matrix multiplication, which we shall, in this work, not

delve further.

Before we embark on the discussion of solving systems of linear equations, it is

essential to understand the various factorization and decompositions of matrices.

6



Chapter 3

Decomposition and Factorization

of matrices

[1](pp.39-48)

3.1 The Singular Value Decomposition

The information in this chapter is important because, as stated at the end of

chapter 2, it is essential to discuss factorization and decomposition’s of matrices,

as the least squares problem, which was briefly touched upon in the introduction,

is related by this chapter. The information here will appear many times in chapter

3, as we discuss the implementation and performance, which very briefly discusses

methods for solving least square problems, A chapter we need to show how the

principle of least squares is linked a system of square matrices. Its will also appear

in some subsequent chapters. You will notice that we stay true to our theme, by

dicussing the implementation and performance of the topics of this chapter too.

We begin:

Definition 15. ‘A number σ ≥ 0 is said to be a singular value for a matrix A

corresponding to two unit vectors ~u,~v iff

A~u = σ~v and A∗~v = σ~u

The vectors ~u,~v are said to be left and right singular vectors for σ. Singular

values are non-negative real numbers in all cases

Why do use start using this notation for vectors here when you mostly do not

else where. A consistent notation would help throughout the document.
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CHAPTER 3. DECOMPOSITION AND FACTORIZATION OF
MATRICES

Theorem 1. The fundamental theorem on Singular value decomposition states

that any m× n complex matrix A can be factored uniquely as

A = UΣV ∗

where U, V are unitary matrices consisting of left and right singular vectors of A

and Σ is a diagonal matrix consisting of singular values σ of A. It is also assumed

that the singular values are non-negative and non-increasing in order.

The concept of Singular value decomposition(SVD) can be geometrically looked

as transformation of a sphere in Cn described by vectors to a hyperellipse by A in

Cm, in which V ∗ preserves the sphere, the diagonal matrix Σ stretches the sphere

into a hyperellise and the unitary matrices U rotates or reflects the hyperellipse.

The various properties of a matrix can be viewed directly related to its singular

valued decomposition:

The rank of a matrix A is r where r is the number of nonzero singular values

of A

The range(the vector space {y ∈ Cm : Ax = y}) of A is the span of the r left

singular vectors and the null space(the vector space {x ∈ Cn : Ax = 0}) is the

span of r right singular vectors.

Let σ1 ≥ σ2 ≥ · · · ≥ σr > 0. The 2-norm of a matrix A, ‖A‖2 is the first

nonzero singular value of the matrix and the frobenius norm of the matrix A, ‖A‖F
is the square root of the sum of squares of the singular values of A

‖A‖F =
√
σ2

1 + . . .+ σ2
r

The nonzero singular values of A are the square roots of the nonzero eigen-

values of A∗A or AA∗

For a unitary matrix A, i.e, if A = A∗, the singular values of A are the absolute

values of the eigenvalues of A

For an n-dimensional square matrix A, its absolute value of determinant is

equal to
∏n

i=1 σi, where σi are the singular values.

Another convenient way of writing the singular valued decomposition is as the

following sum of r rank-one matrices given by

A =
r∑
j=1

σjujv
∗
j

where σi, ui, vi are the singular values, left and right singular vectors respectively.

The computation of SVD of any complex matrix is similar in algorithmic time

to computing the eigendecomposition of the matrix [1].

8



CHAPTER 3. DECOMPOSITION AND FACTORIZATION OF
MATRICES

Example 1. [4] As an example, let us consider the SVD of the matrix

A =

(
2 2

−1 1

)

Here, A∗ =

(
2 −1

2 1

)
. Thus,

A∗A =

(
5 3

3 5

)

We first find the eigenvalues of A∗A. In the above case, it is 8,2. Corresponding

to the eigen values, the eigenvectors are

(
1

1

)
and

(
−1

1

)
. In order to have

unitary matrix for V ∗, we normalize the above eigenvectors to v1 =

(
1√
2

1√
2

)
and

v2 =

(
− 1√

2
1√
2

)
. Now, since the singular values are square roots of the eigenvalues

of A∗A, we have σ1 =
√

8 = 2
√

2 and σ2 =
√

2. In order to find the columns of

U , we proceed as

Av1 = σ1u1 =⇒ u1 =
Av1

σ1

=⇒

Av2 = σ1u2 =⇒ u2 =
Av2

σ2

Performing the calculations as above, we obtain:

u1 =

(
1

0

) (
0

1

)

Thus, the matrices U and V are

U =
(
u1 u2

)
V =

(
v1 v2

)
Hence, the SVD of A is

A = UΣV ∗ =

(
2 2

−1 1

)(
1 0

0 1

)(
2
√

2 0

0
√

2

)(
1√
2

1√
2

− 1√
2

1√
2

)

3.2 QR Factorization

[1, Theorem 7.1, p.51](pp.48-56)
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CHAPTER 3. DECOMPOSITION AND FACTORIZATION OF
MATRICES

Theorem 2. The fundamental theorem in this instance is that any complex m×n
matrix with linearly independent columns(m > n) can be decomposed, or factored

as

A = QR

where Q = Q∗ is unitary and R is upper triangular given by R = Q∗A

It is clear that the columns of Q being orthonormal (mutually orthogonal with

individual norm of vectors equal to 1) individual span the columns of A.

The columns of Q are calculated using methods such as Gram-Schmidt or-

thogonalization, Householder transformations, or Givens rotations.

The Gram-Schmidt projections compute the columns qn of the matrix Q as

follows:

q1 =
P1a1

‖P1a1‖
, q2 =

P2a2

‖P2a2‖
, . . . , qn =

Pnan
‖Pnan‖

where Pi denotes an orthogonal projector, i.e., a linear transformation P such

that P 2 = P and P = P ∗ and the norm is the familiar 2-norm. Note that the

Pi’s are mutually orthogonal and P1 = I. They are given by

q1 = a1 q2 = a2 −
P ∗1 a2

P ∗1P1

q1 q3 = a3 −
P ∗1 a3

P ∗1P1

q1 −
P ∗2 a3

P ∗2P2

q2 . . .

The entries of the matrix R are given by

rij = q∗i aj

Note that the columns of Q are normalized, i.e., have their 2-norm equal to

1, and hence, the process can sometimes said to be Gram-Schmidt orthonormal-

ization.

An example involving Gram-Schmidt process would be: [4]

Example 2. Let us consider the matrix
1 1 1

1 1 2

1 2 −4

1 4 −3


Here,

a1 =


1

1

1

1

 a2 =


1

1

2

4

 a3 =


1

2

−4

−3


10
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P1 = a1


1

1

1

1


The first step of Gram-Schmidt would be:

P2 = a2 −
P ∗1 a2

P ∗1P1

P1 =


1

1

2

4

− 8

4


1

1

1

1

 =


−1

−1

0

2


The next step of Gram-Schmidt would be:

P3 = a3−
P ∗1 a3

P ∗1P1

P1−
P ∗2 a3

P ∗2P2

P2 =


1

2

−4

−3

−−4

4


1

1

1

1

−−9

6


−1

−1

0

2

 =


1
2

3
2
1

−3

1

 ≡


1

3

−6

2


Thus,

Q =
1

2


1 −1 1

1 −1 3

1 0 −6

1 2 2


and R = Q∗A.

This process requires about 2mn2 floating point operations to compute the

QR factorization [1].

On the other hand, the Householder triangularization computes the QR fac-

torization by computing the columns of R from the matrix A unlike in Gram-

Schmidt where we used A to calculate the columns of Q. Thus, this process can

be said to be orthogonal triangularization.

The transformation used to make the columns of A to that of R are the

matrices H = I − 2uu∗ where u∗u = 1 and the rows(elements) ui of u are given

by :

u1 =

(
â1 − a1

2â1

) 1
2

â1 = −sign(a1)(a∗a)
1
2

ui =
xi

−2x̂1u1

where ai denote the columns of A [1]. where a1 is the first column of the matrix.

11
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Example 3. As an example, let us factorize the matrix

A =

1 1

1 2

1 3


First, we calculate u. By using the above given formulae, x̂1 = −

√
3 = −1.72, u1 =

0.888, u2 = u3 = 0.325

The columns of R in this case are

r1 = H1(a1) = I − uu∗(a1) =

−1.72

0

0


To find r2, we have to first transform the second column of A using H1 and H2

where H2 is defined in the same way for H1 except that the transformation is now

applied on the new column of the transformed A, i.e. with the second column a′2

given by:

a′2 = H1(a2) = I−uu∗(a2) =

1

2

3

−2

0.888

0.325

0.325

(0.888 0.325 0.325
)1

2

3

 =

−3.46

0.366

1.366


which gives us the first transformed matrix as:

H1A =

−1.72 −3.464

0 0.366

0 1.366



The H2 is found out bu using x =

(
0.366

1.366

)
so that

x̂1 = −1.414 u =

(
0.792

0.609

)

and

H2H1A =

−1.732 −3.464

0 −1.414

0 0


12
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which gives

(H2H1)∗ = Q =

−0.577 0.707 −0.408

−0.577 0 0.816

−0.577 −0.707 −0.4082


Yet another method of transformation/factorizing matrices to QR form is the

Givens rotations, in which the transformation matrix is a rotation matrix with

innermost block given by; (
cos θ − sin θ

sin θ cos θ

)
with

sin θ =
−b√
a2 + b2

cos θ =
a√

a2 + b2
â =
√
a2 + b2

where

(
a

b

)
is the vector below the first row.

The remaining rows and columns are consisting of permutations of the unit

vectors and their transposes.

Each individual Givens transformation matrix yields one zero to the trans-

formed matrix of A, thus the number of multiplications required is equal to the

number of zeros required to convert the A to triangular form.

Example 4. In the previous example, the Givens rotation matrices for trans-

forming the matrix A to triangular form are:

G∗12 =


1√
2

1√
2

0

− 1√
2

1√
2

0

0 0 1



G∗13 =


√

2√
3

0 1√
3

0 1 0

− 1√
3

0
√

2√
3



G∗23 =

1 0 0

0 1
2

√
3

2

0 −
√

3
2

1
2


Note that each Gij produces a zero at the ij place of A. And finally the matrix

Q = G∗23G
∗
13G

∗
12.

The ultimate use of Householder reflectors and Givens rotations is the re-

duction in the computational time of factorization. Note that the householder

transformations require 2mn2− 2
3
n3, (where m,n denote the number of rows and

columns of the matrix to be factored) flops or floating point operations to perform

13
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MATRICES

the final factorization to QR form, which is clearly less than that required for

the Gram-Schmidt process, hence it is widely used in the factorization of matri-

ces. [1](pp.74-75) [5] However, Givens rotations have even lesser computational

cost, but are used for sparse matrices, i.e. matrices which have large number of 0s

as their entries. Their computational cost is estimated to be around 2n2(m− n
3
)

flops or floating point operations, where m,n denote the number of rows and

columns of the matrix to be factored. [6]

Now, we will discuss various examples of the different methods that are avail-

able in the literature for solving the system of linear equations.

14



Chapter 4

General System of Equations

[1](pp.77-87)

The equation that is the main concern and was given in the beginnning is the

equation

Ax = b

for arbitrary matrices m×n, with m > n A and x, b being corresponding n and m

dimensional vectors respectively. We note that the equation has a unique solution

only in the case of non-singular square(determinant not zero) matrices A.

However in cases where A is non-square, the solution is usually obtained in an

approximate form, known as least squares approximation. In the case of square

matrices which are non-singular, the solution is usually calculated directly and

exactly, or by iterative methods. Note that the direct methods are apt to be

used for matrices with sparsity very less, or, many non-zero entries. In the case

of sparse matrices, the computational cost involved forces one to use iterative

methods.

Here, we briefly discuss the least squares method for arbitrary matrices, direct

methods for square matrices and iterative methods for square matrices, with typ-

ical emphasis for symmetric or unitary matrices in the case of iterative methods.

[7].

4.1 Least squares principle

[1, Theorem 11.1,p.80](pp.77-87)

As briefly said in the introduction, when there are more equations than un-

knowns, i.e. m > n there is usually no vector x satisfying Ax = b but in this case

it is common to consider what is called the “least squares solution of Ax = b”

which involves finding the vector x which minimises the 2-norm of Ax− b
With regards to this problem, we have a fundamental theorem, enunciated as

15
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follows:

Theorem 3. [1, Theorem 11.1,p.80] If A be an m × n complex matrix and b

be an m dimensional vector. Then, an n- dimensional vector x minimizes the

residual norm ‖r‖2 = ‖b− Ax‖2, thus solving the least squares problem

Ax = b

iff r in orthogonal to the range of A, that is

A∗r = 0

=⇒ A∗Ax = A∗b

Pb = Ax

where P is the orthogonal projector onto the range of A. The equation

A∗Ax = A∗b

is an n× n system of equations and is known as normal equations. The solution

x is unique iff A has rank n

Another formulation of the least squares problem frequently in use in compu-

tation is the use of the concept of pseudoinverse. The least squares problem

Ax = b

as seen from the previous problem has a unique solution iff A has full rank, or a

rank of n. If that be the case, then as seen in the previous solution, the solution

is given by

x = (A∗A)−1A∗b

The matrix

(A∗A)−1A∗

is said to be the pseudoinverse of A denoted by A+. It is an n×m matrix.

The two formulations above lead to several methods of computing the least

squares solution. The principle ones among them are:The Normal Equations

method, The QR Factorization method and The Singular Value Decomposition

method(SVD) method.

16
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4.2 Solution to Normal Equations by Cholesky

Factorization

[1](pp.77-87)

The normal equations described in the previous section

A∗Ax = A∗b

for A being a full rank(of rank n) yields us a hermitian and positive definite matrix

A∗A, whence, the system of normal equations is usually solved by factorizing the

matrix A∗A to a form

A∗A = R∗R

where R be upper-triangular, reducing the normal equations to

R∗Rx = A∗b

The factorization is said to be Cholesky factorization of A∗A. The standard

algorithm for doing so is:

Form the matrix A∗A and the vector A∗b

Compute the Cholesky Factorization A∗A = R∗R

Solve the lower triangular system R∗w = A∗b for w

Finally, solve the upper triangular system Rx = w for x

It is seen that the above algorithm requires about mn2 + 1
3
n3 flops or floating

point operations in computation for a matrix A with dimensions m× n [1].

The Cholesky factorization works only for a positive definite hermitian matrix

and is discussed after the LU decomposition.

17
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4.3 Solution to least squares using QR Factor-

ization

[1](pp.77-87)

The QR Factorization discussed in previous Chapter is also applied to solve

the least squares problem, especially in cases where the normal equations are not

positive definite.

In this case, the matrix A is factored by virtue of Gram-Schmidt, or more

popularly, by householder triangularization to the QR form and the projection

operator is taken to be P = QQ∗. This gives

y = Pb = QQ∗b

Since y ∈ range(A), therefore, the solution to the normal equations would be

unique. Combining the QR factorization with the above formulation yields us

QRx = QQ∗b

=⇒ Q∗QRx = Q∗QQ∗b

=⇒ Rx = Q∗b

The above system is an upper triangular system, which would be solved by back-

substitution usual in Gaussian elimination, to be discussed later.

We also note that multiplying the last equation by R−1 gives us the formula

A+ = R−1Q∗, the formula for pseudoinverse.

Hence, the algorithm for solving the least squares problem using QR factor-

ization is:

Compute the QR or reduced QR factorization

Compute Q∗b

Solve the upper triangular system Rx = Q∗b for x

[1]

you need to mention what the reduced QR means if you refer to it as above.

It is seen that for an m × n matrix A, the cost for the above algorithm, if

Householder reflections are used, is about ∼ 2mn2− 2
3
n3 floating point operations,

18
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clearly more than that of the previous algorithm of solving by normal equations

[1].

4.4 Solution to least squares using Singular Value

Decomposition(SVD)

[1](pp.77-87)

As a preliminary note, in this thesis, we are considering A to be m×n, m > n

matrix. Analogous theorems and procedures apply for n × m matrices. Yet

another method for solving the least squares problem is by the use of SVD of

A = UΣV ∗. In this case, the projection operator P = UU∗ whence

y = Pb = UU∗b

=⇒ UΣV ∗x = UU∗b

=⇒ U∗UΣV ∗x = U∗UU∗b

=⇒ ΣV ∗x = U∗b

by virtue of the unitariness of U . Again, we note that, in this case, multiplying

both sides by V Σ−1 gives us A+b = V Σ−1U∗b, which gives the solution by pseudo

inverse.

Thus, the algorithm for solving through SVD is [1] :

Compute the SVD A = UΣV ∗

Compute U∗b

Solve the diagonal system Σw = U∗b for w

Set x = V w

We note that in the third and fourth steps above, the system is reduced to

a diagonal system of equations, unlike in the QR factorization case, where the

system was reduced to a triangular system.
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It is seen that the above algorithm for solving the least squares problem has

a cost of about ∼ 2mn2 + 11n3 floating point operations, which is approximately

same as that for the QR factorization [1].

We see that we are faced with the problem of choosing between the algorithms.

When speed is the main issue, it is best to solve using the first algorithm, based on

the normal equations. However, due to accuracy concerns, the classical method

prescribed is that by the QR factorization method. But, due to rank deficiency

of A, sometimes SVD is preferred over QR subject to certain stability conditions.

The stability conditions stated above is also thus a study to be made, crucial

for the decision of choosing between algorithms, which is undertaken next.
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Chapter 5

Conditioning and Stability of

numerical problems

[1](pp.87-97)

In numerical analysis, it is very important to analyze two very important

terms-Conditioning and Stability of problems.

Conditioning refers to the perturbation behaviour, or in other words, the

change in the properties of a particular problem when its parameters are changed

[1].

Stability pertains to the perturbation behaviour of an algorithm used to solve

the problem [1].

A typical problem in numerical analysis can be viewed as a continuous func-

tion in its variable. A well conditioned problem is a problem in which all small

perturbations of the variable lead to a small change in the value of function. An

ill conditioned problem is a problem in which small perturbations in the variable

lead to large change in the value of the function.

The smallness and largeness in the above descriptions pertain with respect to

the norm in which the variable is perturbed.

In this regard, a very useful concept is that of condition number. The absolute

condition number, k̂ of any problem, say f at x, where x is the input or the

variable of f is defined as:

k̂ = lim
h→0

sup
‖dx‖≤h

‖df‖
‖dx‖

where

df = f(x+ dx)− f(x)

and dx denotes a small perturbation of x [1].

Since, due to continuity of problem, the limit of supremum can be viewed as
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supremum over all infinitesimal perturbations of dx, we can write the condition

number as

k̂ = sup
dx

‖df‖
‖dx‖

Passing to limit dx→ 0, we can get, if the problem be differentiable, the condition

number k as a derivative:

k̂ = ‖J(x)‖

where J(x) denotes the Jacobian of f . Where the Jacobian is used to describe a

matrix and its determinant when the matrix is a square matrix.

The relative condition number, k pertains to relative changes in the problem.

It is defined as

k = sup
dx

( ‖df‖
‖f‖
‖dx‖
‖x‖

)
Again, assuming differentiability of f , we can obtain the above term in terms of

the Jacobian J

k =
‖J(x)‖
‖f(x)‖
‖x‖

The more useful of the condition numbers is the relative condition numbers in

numerical analysis.

Now, the above concept of relative condition number is applied to that of the

linear algebraic problem of perturbation in Ax from the input x, where A is an

m×n complex matrix. The perturbations relative to x would then be defined as

k = sup
dx

( ‖A(x+dx)−Ax‖
‖Ax‖
‖dx‖
‖x‖

)
= sup

dx

‖Adx‖
‖ dx‖
‖Ax‖
‖x‖

=⇒ k = ‖A‖ ‖x‖
‖Ax‖

by the linearity of the operation on matrices. where ‖ · ‖ denotes the vector norm

for x,Ax and the vector induced norm for A respectively. The definition of a

norm was referred to in chapter 2.

If, in the above calculation, A is a square matrix with non-zero determinant.

Then, the fact that ‖x‖
‖Ax‖ ≤ ‖A

−1‖ can be used in the above equation to obtain [1]:

k ≤ ‖A‖‖A−1‖

=⇒ k = a‖A‖‖A−1‖

with

a =

‖x‖
‖Ax‖

‖A−1‖
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If the norm be the 2-norm on vectors, then a = 1, whence

k = ‖A‖‖A−1‖

Even if A is not a square matrix, the above argument can be generalized to

arbitrary complex m× n matrix with the use of pseudo inverse [1].

The above analysis lead to the following theorem:

Theorem 4. [1, Theorem 12.1,p.94]

Let A be a complex m×m nonsingular matrix. Then, the problem of computing

b given x in the system has the condition number:

k = ‖A‖‖x‖
‖b‖
≤ ‖A‖‖A−1‖

with respect to changes/perturbations of x. Correspondingly, the inverse problem

of computing x given b has a condition number:

k = ‖A−1} ‖b‖
‖x‖
≤ ‖A‖‖A−1‖

with respect to changes/perturbations of b. Equality holds in the above equations

if the norm is chosen to be the 2-norm and if x is a multiple of a right singular

vector of A corresponding to the first singular value of A or b is a multiple of a

left singular vector of A corresponding to the mth singular value of A.

.

We note that the term k = ‖A‖‖A−1‖ is often called the condition number of

the matrix A and is denoted by k(A).

we must note in what follows that the norm is the 2-norm. By using the

singular values of A the condition number can also be written as

k(A) =
σ1

σm

the singular values are σ1 ≥ σ2 ≥ · · ·σm and ‖A‖ = σ1 and ‖A−1‖ = 1/σm. If

k(A) is small, A is said to be well conditioned; else if it is large, A is said to be

ill conditioned. When the matrix is square singular, k(A) =∞.

We note that for a rectangular m × n complex matrix A the definition of

condition number of A is

k(A) = ‖A‖‖A+‖

For 2-norm in consideration, the condition number can be written as

k(A) =
σ1

σn
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where σ1, σn are the first and n th singular values respectively

5.1 Condition number of a system of equations

[1](pp.87-97)

In the previous section, the perturbation was with respect to x or b for fixed

A in the equation Ax = b. But, when A is perturbed fixing b or x, we see that a

similar conditioning behaviour is observed. Specifically, when A is perturbed by

an infinitesimal dA, fixing b, x changes by an infinitesimal dx, where

(A+ dA)(x+ dx) = b

Using Ax = b and neglecting dAdx, we obtain(dA)x + A(dx) = 0, that is, dx =

−A−1(dA)x, which implies [1]:

‖dx‖ ≤ ‖A−1‖‖dA‖‖x‖

=⇒
‖dx‖
‖x‖
‖dA‖
‖A‖

≤ ‖A−1‖‖A‖ = k(A)

Equality holds whenever dA is such that

‖A−1(dA)x‖ = ‖A−1‖‖dA‖‖x‖

The above analysis can be summed as a theorem:

Theorem 5. [1, Theorem 12.2] If b be fixed and A is a complex non-singular

matrix, then the condition number of this problem with respect to perturbations

of A is

k(A) = ‖A‖‖A−1‖

5.2 Floating point arithmetic and Stability

[1](pp.97-108)

The whole point of the previous sections considering conditioning is related

to the crucial concept of stability of algorithm with respect to computers which

in turn is related to floating point arithmetic. Computers perform arithmetic in

floating point format which involves rounding and even store numbers in such

a format, which is unlike the continuous manner in which our human intuition

works. Therefore, there are bound to be errors in any computation and working
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of any algorithm successfully depends on minimizing the errors associated with

such calculations.

Example 5. Let us see an example to see how computers can go wrong in floating

point computations. Consider

(1 + 1e20)− 1e20 = 0.00000, and 1 + (1e20− 1e20) = 1.00000

Rounding on a computer would have lead to: 1 + 1e20 being stored as 1e20 in

the first case.

We see that though both parts are actually the same value in reality, but the

computer calculates them significantly differently because of its use of floating

point numbers, which rely on the significant digits.

Now follow very carefully the following definitions and examples. They relate

to stability, conditioning and accuracy, which is important for in this thesis.

Definition 16. The floating point number system, F is a special system of num-

bers which is a discrete subset of the real numbers R determined by the base b,

which is typically 2 and an integer t ≥ 1 known as the precision. It is the set of

numbers 0 and numbers of the form

x = ±(
m

bt
)be

where m is an integer such that 1 ≤ m ≤ bt and e is arbitrary integer.

The quantity ±m
bt

is known as the fraction or mantissa of x and e is the

exponent. Thus, the floating point system F is a countably infinite set [1].

Definition 17. The resolution of F is summarized by a number known as the

machine epsilon defined as

εmachine =
1

2
b1−t

The machine epsilon is half the distance between 1 and the next larger floating

point number [1].

Proposition 1. The fundamental property of εmachine is:

∀x ∈ R,∃x′ ∈ F : |x− x′| ≤ εmachine|x|

In terms of fl, we have:

Proposition 2.

∀x ∈ R,∃|ε| ≤ εmachine : fl(x) = x(1 + ε)
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where fl is a function from R to F giving the closest floating point approximation

to a real number.

[1]

Using the above propositions and definitions, we have the fundamental axiom

of floating point arithmetic as:

Definition 18.

∀x, y ∈ F,∃|ε| ≤ εmachine : x ◦ y = (x ∗ y)(1 + ε)

where ◦ is the floating point analogue of any usual arithmetic operation ∗ [1].

In other words, floating point arithmetic is exact up to a relative error of size

at most εmachine

We also note that complex floating point numbers are represented by pairs of

floating point real numbers.

Definition 19. An algorithm f̃(x) is a map between two vector spaces:X → Y

of data to solutions, similar to a problem defined in the section on conditioning.

The data fed is the floating point analogue of the real data and the resulting

function is thus a floating point analogue of the real problem [1].

Definition 20. [1] The relative error of computation of a mathematical problem,

f is defined as
‖f̃(x)− f(x)‖
‖f(x)

Now, the main definition concerning accuracy of an algorithm:

Definition 21. [1] An algorithm f̃ is a good algorithm, or accurate, if for each

x ∈ X,
‖f̃(x)− f(x)‖
‖f(x)

= O(εmachine)

where O(εmachine means on the order of machine, or there exists a constant C

such that ‖f̃(x)−f(x)‖
‖f(x)

≤ Cεmachine in the limit x→∞

The most important concept of stability is defined as:

Definition 22. [1] An algorithm f̃ for a problem f is said to be stable if for

each x ∈ X,
‖f̃(x)− f(x)‖
‖f(x)

= O(εmachine)

for some x̃ with
‖x̃− x‖
‖x‖

= O(εmachine)

where˜represents the floating point analogue of a real operation.
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In other words, a stable algorithm gives nearly the right answer to nearly the

right question.

Another important definition is that of backward stability:

Definition 23. [1] An algorithm f̃ corresponding to a problem f is said to be

backward stable if for each x ∈ X,

f̃(x) = f(x̃)

for some x̃ with
‖x̃− x‖
‖x‖

= O(εmachine)

In other words, a backward stable algorithm gives exactly the right answer to

nearly the right question.

A very useful theorem in the areas of accuracy, stability and backward stability

is the independence of norm stated as:

Theorem 6. [1, Theorem 14.1] If problems f and f̃ are defined on finite di-

mensional spaces X, Y , then the properties of accuracy, stability and backward

stability hold independent of the choice of norms in X, Y .

A proof can be given as follows:

It is known that any two norms on a finite dimensional vector space are

equivalent, in the sense that both are of the same order, or there exist constants

c1, c2 such that the norm of a vector ‖x‖ is bounded between c1‖x‖ and c2‖x‖.
Thus, changing the norm may affect the size of constant bounding O(εmachine)

but not the existence of such a constant, whence the theorem stands proved [1].

Example 6. The inner product of two vectors x, y ∈ Cm, x∗y can be shown to

be backward stable for the algorithm being to compute pairwise products of the

components of the two vectors and adding them.

Example 7. However the outer product of the same two products, xy∗ for two

vectors x ∈ Cm, y ∈ Cn with the algorithm of forming pairwise products and

collecting them into a matrix is only stable and not backward stable for the

reason that the computational analogue of the collection of the products would

not have rank exactly one which is required in the real case.

Example 8. The calculation of eigenvalues of a given complex matrix by us-

ing the algorithm of first finding the coefficients of the characteristic polynomial

and then finding its roots is unstable, as the problem of finding the roots of a

polynomial is ill conditioned. Thus, the algorithm is unsuitable for use.
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We also note that the accuracy of a backward stable algorithm depends on the

condition number of the problem to be solved:if the problem is well conditioned,

the accuracy will be good, else the accuracy is slacked.

The Householder triangularization was preferred in the section on QR fac-

torization of matrices. This is because the algorithm for householder triangu-

larization is backward stable for all matrices. In addition there is the following

theorem:

Theorem 7. [1, Theorem 16.1,p.116] If the QR factorization A = QR of a

complex m×n matrix is computed by means of Householder triangularization on

a computer with computed factors Q̃, R̃, then

Q̃R̃ = A+ dA,
‖dA‖
‖A‖

= O(εmachine)

for some dA ∈ Cm×n

The main problem that we are concerned with in this thesis is the solution of

system of equations. Since it is seen that any system of rectangular matrices can

be reduced to that of a system of square matrices using the least squares method,

therefore our primary concern would be in the solution of such systems, that is

solving systems of non-singular square matrices. It was seen that such a system

can be reduced to solving a triangular system by the use of QR factorization. The

triangular system is in turn solved by the method of back substitution, which is

seen to be backward stable by the following theorem:

Theorem 8. [1, Theorem 16.2,p.118] If we consider the following algorithm to

solve a linear nonsingular system of equations Ax = b:

Factor A = QR with Q represented as a product of householder reflection matrices

Construct the vector y = Q∗b

Solve the system Rx = y by back substitution

Then, the algorithm is backward stable, satisfying:

(A+ dA)x̃ = b,
‖dA‖
‖A‖

= O(εmachine)
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for some dA ∈ Cm×m where d̃enotes the computational analogue of the real oper-

ation.

A proof to the above can be given as follows: In addition, it can be shown, by

combining the backward stability of QR factorization, householder triangulariza-

tion and the condition number of A, that:

Theorem 9. [1, Theorem 16.3, p.119] The solution of Ax = b, x̃ computed by

the above algorithm satisfies

‖x̃− x‖
‖x‖

= O(k(A)εmachine)

where k(A) denotes the condition number of the matrix A.

The method of back substitution is also seen to be backward stable. The

method of back substitution is used in solving triangular system of equations. It

will be observed that any given nonsingular system of equations can be reduced

to solving a triangular system of equations in the previous sections.

It would also be observed in the coming section that direct methods to solve

linear system of nonsingular equations such as Gaussian elimination, LU Decom-

position, Cholesky Factorization etc. are essentially triangular systems. There-

fore the stability of algorithm to solve such systems is vitally to be studied.

In regards to this, the algorithm of solving lower triangular system of equa-

tions, that is , systems of the form RX = b where R is a lower triangular complex

square matrix is said to be forward substitution whereas that of solving upper

triangular systems, where R is upper triangular square complex matrix is back

substitution. The algorithm of back substitution can be described as:

xm = bm
rmm

xm−1 = (bm−1−xmrm−1,m)

rm−1,m−1

xm−2 = (bm−2−xm−1rm−2,m−1−xmrm−2,m)

rm−2,m−2

xj =
(bj−

∑m
k=j+1 xkrjk)

rjj

where Rx = b is the upper triangular system to be solved with xi, bi, rij denoting

components of x, b, R respectively [1].
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The above algorithm requires about ∼ m2 floating point operations [1].

With regards to the above algorithm, we have the following theorem:

Theorem 10. [1, Theorem 17.1,p.122] The back substitution algorithm to solve

the upper triangular system is backward stable with the computed solution x̃ ∈ Cm

satisfying

(R + dR)x̃ = b

for some upper triangular dR ∈ Cm×m with

‖dR‖
‖R‖

= O(εmachine)

specifically, for each component of the matrix dR, we have:

|drij|
|rij|

≤ mεmachine +O(ε2machine)

There exist theorems and definitions pertaining to conditioning and stability

least squares problems and their solution algorithms like SVD, Householder tri-

angularization and Normal Equations. However, in this thesis, we will be mainly

concerned with solving Ax = b for square matrices A, hence the discussion of

least squares in detail would not be made.

With the above observations on the general nature of solving a typical equation

Ax = b for arbitrary complex matrix A, we embark on the solution to non singular

system of equations Ax = b, since it was observed that the use of least squares

problem gives A∗Ax = A∗b. Meaning it actually reduces the original system

to solving Ax = b for square matrices. And this is the square system that

you solve. We naturally begin with Direct methods, which are mathematically

straightforward.
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Direct Methods of Solving

nonsingular systems

[1](pp.145-155)

6.1 Gaussian Elimination

Now that you are well equipped in the background of conditioning, computational

costs and stability, we can now effectively analyze the performance of the direct

methods implemented for square matrices. As I said in the background docu-

ment, the classical solution method for systems of linear equations, familiar from

linear algebra, is Gaussian elimination, the natural generalization of solving

two equations with two unknowns. The method is quite similar to factorization of

matrices by QR factorization, that is Gaussian elimination is essentially triangu-

larization of the system Ax = b, the main difference is that the transformations

applied to A to triangularize are not unitary. The algorithm can be basically

described as follows:

A =

1 1 −1

1 1 2

0 1 1


• Solve one of the n equations (e.g. the first one) for one of the unknowns

(e.g. x1)

• Replace x1 by the resulting term (depending on x2, . . . , xn) in the other

n− 1 equations

• Hence, x1 is eliminated from those

• Solve the resulting system of n − 1 equations with n − 1 unknowns analo-

gously and continue until an equation only contains xn, which can therefore
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be explicitly calculated

• Now, xn is inserted into the elimination equation of xn−1, so xn−1 can be

given explicitly

• Continue until at last the elimination equation of x1 provides the value for

x1 by inserting the values for x2, . . . , xn (known by now)

• Simply speaking, the elimination means that A and B are modified such

that there are only zeros below a1,1 in the first column. Note that the new

system (consisting of the first equation and the remaining x1-free equations),

of course, is solved by the same vector x as the old one

Note: When you put A/b in Matlab, a proprietary programming language devel-

oped by Mathworks that allows matrix manipulations, the software attempts to

classify the type of matrix involved and then selects the best technique to use to

reliably solve the problem in an efficient way [3]. Seeing as this thesis is based on

solving these methods when large n. It’s of interest to us.

6.2 LU Decomposition

[1](pp.147-155)

We will see in the coming algorithm that together with the matrix A, the

matrices L and U appear in the algorithm of Gaussian elimination. We have,

• In U , only the upper triangular part (inclusive the diagonal) is populated.

• In L, only the strict lower triangular part is populated (without the diago-

nal).

• If filling the diagonal in L with ones, we get the fundamental relation

A = L · U

.

At the start you do not have a previous algorithm.

You can check my MA2715 notes. You are not explaining things here and L

is unit lower triangular.

Such a decomposition or factorization of a given matrix A in factors with

certain properties (here: triangular form) is a very basic technique in numerical

linear algebra.
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[8]

It is important to note that the matrix must have all the principal minors non-

zero so LU decomposition only works in limited conditions. For more details, we

refer to [9]

Here is an illustration of LU decomposition in one case,

1. Our initial augmented system will look like
1 2 −2 −1 1

2 3 −3 2 3

1 2 5 3 −2

3 −3 2 1 −2

1 2 3 −1 −4

 |

−8

−34

43

19

57




1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1



2. After that, the first column will be eliminated and the system will transform

as 
1 2 −2 −1 1

0 −1 1 4 1

0 0 7 4 −3

0 −9 8 4 −5

0 0 5 0 3

 |

−8

−18

51

43

65




1 0 0 0 0

2 1 0 0 0

1 0 1 0 0

3 0 0 1 0

1 0 0 0 1


3. Now, the second column will be eliminated using elementary row trans-

formations, which are nothing but linear combinations of the rows of the

matrix 
1 2 −2 −1 1

0 −1 1 4 1

0 0 7 4 −3

0 0 −1 −32 −14

0 0 5 0 3

 |

−8

−18

51

205

65




1 0 0 0 0

2 1 0 0 0

1 0 1 0 0

3 9 0 1 0

1 0 0 0 1



4. After the third column elimination, we have
1 2 −2 −1 1

0 −1 1 4 1

0 0 7 4 −3

0 0 0 −220
7
−101

7

0 0 0 −20
7

36
7

 |

−8

−18

51
1486

7
200
7




1 0 0 0 0

2 1 0 0 0

1 0 1 0 0

3 9 −1
7

1 0

1 0 5
7

0 1


33



CHAPTER 6. DIRECT METHODS OF SOLVING NONSINGULAR
SYSTEMS

5. Finally, the last column will be eliminated and we get our U and L as

U :=


1 2 −2 −1 1

0 −1 1 4 1

0 0 7 4 −3

0 0 0 −220
7
−101

7

0 0 0 0 497
77

 |

−8

−18

51
1486

7
714
77




1 0 0 0 0

2 1 0 0 0

1 0 1 0 0

3 9 −1
7

1 0

1 0 5
7

1
4

1

 := L

6. Finally, we have the factors L and U and
1 0 0 0 0

2 1 0 0 0

1 0 1 0 0

3 9 −1
7

1 0

1 0 5
7

1
4

1

 .


1 2 −2 −1 1

0 −1 1 4 1

0 0 7 4 −3

0 0 0 −220
7
−101

7

0 0 0 0 497
77

 =


1 2 −2 −1 1

2 3 −3 2 3

1 2 5 3 −2

3 −3 2 1 −2

1 2 3 −1 −4


7. thus, we have L · U = A.

The insight above means for us: Instead of using the classical Gaussian elim-

ination, we can solve Ax = b with the triangular decomposition A = LU , namely

with the algorithm resulting from

Ax = LUx = L(Ux) = Ly = b

. We note that this process would essentially involve solving two triangular sys-

tems:

• First, solve Ly = b for unknown y by forward substitution

• Then, solve Ux = y by back substitution.

It is observed that the above processes require ∼ 2
3
m3 +m2 +m2 floating point

operations, which amounts to about ∼ 2
3
m3 floating point operations, which is

half of ∼ 4
3
m3 floating point operations required for a solution by Householder

triangularization [1].

We must also note that the above algorithm presented is unstable in that it

is not backward stable. The instability is related to the fact that the Gaussian

elimination, as presented above, attempts a division by zero for some matrices.

Example 9. [1](pp.152-153)

To illustrate the instability of Gaussian elimination in the usual algorithm as
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described above, we see that for the matrix(
0 1

1 1

)

The matrix is well conditioned with a condition number of

k(A) =
(3 +

√
5)

2
≈ 2.618

However, the above algorithm of Gaussian elimination fails at the first step be-

cause of the attempt at division by zero.

When the matrix is perturbed slightly, say the Gaussian elimination is applied

to the matrix (
10−20 1

1 1

)
the procedure does not fail.

Supposing that the Gaussian elimination is performed on a machine with

εmachine ≈ 10−16, the number 1 − 1020 will be represented rounded off to say,

−10−20. The matrices L̃Ũ produced would be:(
1 0

1020 1

) (
10−20 1

0 −10−20

)

respectively.

But, the product L̃Ũ would be:(
10−20 1

1 0

)

which is not at all close to A.

The problem with the last example and, in general, with instability of Gaus-

sian elimination is that the LU factorization, though stable, is not backward

stable. In addition, the triangular matrices generated have condition numbers

which may be arbitrarily large.

To encounter the problem with Gaussian elimination, as seen in the previ-

ous example, the concept of pivoting is introduced to the process of Gaussian

elimination, which is discussed next.

6.3 Gaussian Elimination with Pivoting

[1](pp.155-172)
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We observed that in the algorithm of the previous section, we assumed that

divisions of the kind ai,j/ uj,j or xi/ui,i do not cause any problems, i.e. particularly

that there occur no zeros in the diagonal of U.

But, we also saw in an example the instability that this can give rise to. To

encounter these issues, the concept of pivoting is introduced.

• As everything centers on those values in the diagonal, they are called Pivots

(French word).

• If the basic Gauss elimination process is applied to a positive definite matrix

then it can be shown that the diagonal entries at all stages can be shown

to be positive. So in the positive definite case, all eigenvalues are positive,

which is why zeros are impossible in the diagonal – for example, in the

Cholesky method, to be discussed in the next section, everything is alright

[1].

• However, in the general case, the requirement uj,j 6= 0∀j is not granted. If

a zero emerges, the algorithm has to be modified, and a feasible situation,

i.e. a non-zero in the diagonal, has to be forced by permutations of rows or

columns(which is possible, of course, when A is not singular!) [1].

• This ’column pivot search’ leads to what is known as row pivoting, i.e. by

swapping rows based on this search. The ’total pivot search’ which leads

to complete pivoting which involves swapping both rows and columns.

Consider for example the matrix

A =

1 1 0

1 1 2

0 1 1


A possible partner for exchange of a zero ui,i in the diagonal can be found

either in the column i below the diagonal (column pivot search) or in the entire

remaining matrix (everything from the row and the column i + 1 onward, total

pivot search).

However, we see that the above method of total pivoting or total pivot search

is computationally quite expensive, as close to m3 floating point operations or

flops are required for a square complex matrix A of order m. Thus, in order to

reduce the computational cost, the concept of partial pivoting is also in use.

The method of partial pivoting consists in swapping only rows. The pivot is

chosen to be largest of the sub-diagonal entries of a given column. This reduces

the computational cost by an order of one, that is, only about m2 floating point

operations are required for a square complex matrix of order m.
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The algorithm for partial pivoting is similar to the usual elimination, except

that the successive elimination is pre-multiplied by a permutation matrix, which

is a matrix with zero everywhere except for a 1 at each row and column, or, the

matrix obtained by permuting the rows or columns of the identity matrix. After

m− 1 steps, the original matrix A becomes an upper triangular matrix U where

Lm−1Pm−1 . . . L2P2L1P1A = U

with Li being the lower triangular matrices and Pj being the permutation matri-

ces.

Example 10. [1, p.157-158] An illustration is quite useful in this case. We

consider factorizing

A =


2 1 1 0

4 3 3 1

8 7 9 5

6 7 9 8


the first step in partial pivoting is to interchange the first and third rows, which

amounts to left multiplication by P1
1

1

1

1




2 1 1 0

4 3 3 1

8 7 9 5

6 7 9 8

 =


8 7 9 5

4 3 3 1

2 1 1 0

6 7 9 8


The first elimination step would be:

1

−1
2

1

−1
4

1

−3
4

1




8 7 9 5

4 3 3 1

2 1 1 0

6 7 9 8

 =


8 7 9 5

−1
2
−3

2
−3

2

−3
4
−5

4
−5

4
7
4

9
4

17
4


Now, we interchange the second and fourth rows, which is equivalent to left

multiplication by P2:
1

1

1

1




8 7 9 5

−1
2
−3

2
−3

2

−3
4
−5

4
−5

4
7
4

9
4

17
4

 =


8 7 9 5

−7
4

9
4

17
4

−3
4
−5

4
−5

4
1
2
−3

2
−3

2


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The next elimination step would be multiplication by L1:
1

1
3
7

1
2
7

1




8 7 9 5

−7
4

9
4

17
4

−3
4
−5

4
−5

4
1
2
−3

2
−3

2

 =


8 7 9 5

7
4

9
4

17
4

−2
7

4
7

−6
7
−2

7


Again, the third and fourth rows are interchanged, which amounts to multiplica-

tion by P3: 
1

1

1

−1
3

1




8 7 9 5
7
4

9
4

17
4

−2
7

4
7

−6
7
−2

7

 =


8 7 9 5

7
4

9
4

17
4

−6
7
−2

7

−2
7

4
7


The final elimination step is pre multiplication by L3:

1

1

1

−1
3

1




8 7 9 5
7
4

9
4

17
4

−6
7
−2

7

−2
7

4
7

 =


8 7 9 5

7
4

9
4

17
4

−6
7
−2

7
2
3


The example above illustrated the computation of the LU factorization of

the matrix PA, where P = Pm−1 . . . P2P1 and L = (L′m−1 . . . L
′
2L
′
1) with L′k =

Pm−1 . . . Pk+1LkP
−1
k+1 . . . P

−1
m−1 which is in general known as the LU factorization

of A.

The Gaussian elimination with partial pivoting can be thus written as equiv-

alent to:

• Permutation of the rows of A, equivalent to pre-multiplying A by P ..

• Apply the usual Gaussian elimination without pivoting to PA.

The formal statement of the algorithm is [1]:
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Set U = A,L = I, P = I

for k = 1 to m− 1 Select i ≥ k to maximize |uik| Interchange rows of U , that is, apply uk,k:m → ui,k:m

Interchange corresponding rows of L, that is, apply lk,1:k−1 → li,1:k−1

Interchange rows of P , that is, apply pk → pi

for j = k + 1 to m Apply ljk =
ujk
ukk

Apply uj,k:m = uj,k:m − ljkuk,k:m

The above algorithm is for Gaussian elimination with partial pivoting. There

exists, another, computationally expensive , method of Gaussian elimination

with complete pivoting, in which both rows and columns are interchanged. The

schematic factorization of A in that case could be written as:

PAQ = LU

where, in addition to the PA applied in partial pivoting, Q denotes the permu-

tations of columns of A [1].

6.4 Stability of Gaussian elimination

[1](pp.163-172)

Gaussian elimination is very difficult to analyze in terms of stability. The

general problem of instability of Gaussian elimination is not yet satisfactorily

understood. However, Gaussian elimination with partial pivoting is backward

stable for most of the problems that are computed in numerical linear algebra.

To this effect, some theorems follow which lead us to a clearer understanding of

the stability of Gaussian elimination algorithms:

Theorem 11. [1, Theorem 21.1,p.166] If the factorization A = LU of a nonsin-

gular matrix A ∈ Cm×m be calculated in a machine which satisfies the fundamental
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axiom of floating point arithmetic. If A has an LU factorization, then for suf-

ficiently small εmachine, the computation of the factorization would be successful

and the computed matrices L̃, Ũ satisfy:

L̃Ũ = A+ dA
‖dA‖
‖L‖‖U‖

= O(εmachine)

for some dA ∈ Cm×m

We note that, in general ‖L‖‖U‖ 6= O(‖A‖), which implies that the algorithm

is not backward stable, however we must note that it is not guaranteed that

‖L‖‖U‖ 6= O(‖A‖).

Whereas, in the case of Gaussian elimination with partial pivoting, since piv-

oting involves maximization over a column, therefore, the algorithm produces a

matrix L with entries of absolute value less than or equal to 1. Therefore, we

have, ‖L‖ = O(1), which in turn, from the previous theorem, implies that

‖dA‖
‖U‖

= O(εmachine)

which implies backward stability provided ‖U‖ = O(‖A‖). This leads us to the

following theorem on the stability of the algorithm:

Theorem 12. [1, Theorem 22.2,p.165] The factorization PA = LU of a com-

plex square matrix A of order m computed by using Gaussian elimination with

partial pivoting on a computer satisfying the fundamental axiom of floating point

arithmetic produces P̃ , L̃, Ũ that satisfy

L̃Ũ = P̃A+ dA
‖dA‖
‖A‖

= O(ρεmachine)

for some complex matrix dA of order m×m and ρ =
maxi,j |uij |
maxi,j |aij | is said to be growth

factor for A. In addition, if |lij| < 1 for all i > j, then P̃ = P for all sufficiently

small εmachine.

thus, the algorithm is backward stable if ρ = O(1)

Example 11. [1, p.165] Despite the backward stability promised in the last

theorem, theoretically it is possible for the algorithm of Gaussian elimination
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with partial pivoting to be unstable. An example is illustrated with the matrix

A =


1 1

−1 1 1

−1 −1 1 1

−1 −1 −1 1 1

−1 −1 −1 −1 1


At the end of factorization, we obtain:

U =


1 1

1 2

1 4

1 8

16


giving the final PA = LU factorization as:

1 1

−1 1 1

−1 −1 1 1

−1 −1 −1 1 1

−1 −1 −1 −1 1

 =


1 1

−1 1 1

−1 −1 1 1

−1 −1 −1 1 1

−1 −1 −1 −1 1




1 1

1 2

1 4

1 8

16


The growth factor, ρ for the above matrix is 16. Thus, for a complex square matrix

of order m of the same form, the growth factor can get as large as 2m−1, which

indicates the unstable nature of the Gaussian elimination with partial pivoting.

Despite the above example, the Gaussian elimination with partial pivoting is

widely used in practice because factors of the form in the last example never seem

to appear in practical applications. Thus, from a statistical point of view, the

gaussian elimination with partial pivoting is relatively backward stable.

A partial explanation for this could be given as follows: Since we have PA =

LU , U = L−1PA. Thus, if Gaussian elimination is unstable when applied to the

matrix A, then it is implied that ρ is large, which thus implies that L−1 must also

be large. However, there exist correlations among the signs of entries of L that

render the matrices L−1 well conditioned when gaussian elimination with partial

pivoting is applied to A. In other words, when A is random, its column space

is randomly oriented and the same follows for P−1L which is incompatible with

L−1 being large. If L−1 is large, then the column spaces of L or P−1L must be

skewed in such a way that its column space is not random.
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6.5 Cholesky Factorization

[1](pp.172-179)

When the matrix A in the familiar system of equations

Ax = b

is hermitian, the factorization PA = LU can be carried out twice as fast the

case for non-hermitian matrices. The technique used for doing so is the Cholesky

Factorization. This method only applies for positive definite matrices as for the

reduction the matrix needs to have the positive real eigen values. The method

described above, with which the calculation of the ui,k , i 6= k, in the LU factor-

ization can be avoided and with that about half of the total computing time and

required memory.

[10].

We recall that a hermitian matrix A satisfies x∗Ay = y∗Ax∀x, y ∈ Cm and

positive definite hermitian matrices satisfy x∗Ax > 0 in addition.

The eigenvalues of a hermitian positive definite matrix are all positive because,

if Ax = λx, x 6= 0 =⇒ x∗Ax = λx∗x > 0 =⇒ λ > 0.

We also have that the eigenvectors corresponding to distinct eigenvalues are

orthogonal For [1] (pp.169) ,

Ax1 = λ1x1 Ax2 = λ2x2 λ1 6= λ2

=⇒ λ2x
∗
1x2 = x∗1Ax2 = x∗2Ax1 = λ1x∗2x1 = λ1x

∗
1x2

=⇒ (λ1 − λ2)x∗1x2 = 0

Since λ1 6= λ2 we get that x∗1x2 = 0

the problem of decomposing a hermitian positive definite matrix proceeds

along similar lines to that of Gaussian elimination. Consider the example of

triangularizing

A =

(
1 w∗

w v

)
=

(
1 0

w I

)(
1 w∗

0 v − ww∗

)
The usual gaussian elimination would now continue the reduction to triangular

form by introducing zeros in the second column. But, in the Cholesky factoriza-

tion first introduces zeros in the first row to match the zeros introduced in the

first column. This is done by a right upper- triangular operation that subtracts
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multiples of first column from subsequent ones:(
1 w∗

0 v − ww∗

)
=

(
1 0

0 v − ww∗

)(
1 w∗

0 I

)

combining the two operations above, the matrix A has been factored into three

terms:

A =

(
1 w∗

w v

)
=

(
1 0

w I

)(
1 0

0 v − ww∗

)(
1 w∗

0 I

)
The above process is repeted in the general Cholesky factorization process.

In general, the matrix A is factored into first into the form:

A = R∗1A1R1

where R is upper triangular which finally results in

A = R∗R

with R∗ = R∗1R
∗
2 . . . R

∗
m and Rm . . . R2R1 = R. [1](pp.173-174)

Hence, we have the following theorem:

Theorem 13. [1, Theorem 23.1,p.174] Every hermitian positive definite matrix

A ∈ Cm has a unique Cholesky factorization A = R∗R

The algorithm for Cholesky factorization can be written as [1] :

Put R=A

for k = 1 to m and for j = k + 1 to m

Rj,j:m = Rj,j:m − Rk,j:mR̄kj

Rkk
Rk,k:m =

Rk,k:m√
Rkk

It is seen that the Cholesky factorization is dominated by the operations

performed in the inner loop of the above algorithm, which requires about m−j+1

multiplications, one division and m− j + 1 subtractions which is carried 2(m− j
floating point operations, repeated for each j from k + 1 to m and the whole

loop being repeated for each k from 1 to m. thus the algorithm requires ∼ 1
3
m3

floating point operations, which is half of that of Gaussian elimination ∼ 2
3
m3 for

a complex hermitian matrix of order m
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Example 12. We let

A =

25 15 −5

15 18 0

−5 0 11

 =

 R11 0 0

R12 R22 0

−R13 R23 R33


R11 R12 R13

0 R22 R23

0 0 R33


The first row of R would be formed as follows:

A =

25 15 −5

15 18 0

−5 0 11

 =

 5 0 0

3 R22 0

−1 R23 R33


5 3 −1

0 R22 R23

0 0 R33


The second row of R would be formed as follows:

A =

25 15 −5

15 18 0

−5 0 11

 =

 5 0 0

3 3 0

−1 1 R33


5 3 −1

0 3 1

0 0 R33


where the operation is(

18 0

0 11

)
−

(
3

−1

)(
3 −1

)
=

(
R22 0

R23 R33

)(
R22 R23

0 R33

)

=⇒

(
9 3

3 10

)
=

(
3 0

1 R33

)(
3 1

0 RR33

)
The third and final column of R would be calculated as:

10− 1 = R2
33 =⇒ R33 = 3

resulting in the final factorization as

A =

 5 0 0

3 3 0

−1 1 3


5 3 −1

0 3 1

0 0 3


The above method of Cholesky factorization is backward stable, intuitively

because R can never grow too large by the Singular Value Decomposition, for

example, in the 2-norm, ‖R‖ = ‖R∗‖ = ‖A‖ 1
2 . Thus, the following theorem is

with respect to this effect:

Theorem 14. [1, Theorem 23.2,p.176] The Cholesky decomposition of a complex

positive definite hermitian matrix A of order m, when performed on a machine

satisfying the fundamental axiom of floating point arithmetic runs to completion
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with the computed factor R̃ satisfying

R̃∗R̃ = A+ dA
‖dA‖
‖A‖

= O(εmachine)

for some matrix dA ∈ Cm×m

Thus, due to the stability of Cholesky decomposition, it is frequently used to

solve systems Ax = b for positive definite hermitian A = R∗R as follows:

First, solve R∗y = b for y by forward substitution

Solve Rx = y by back substitution

It can be shown that the above procedure is backward stable:

Theorem 15. [1, Theorem 23.3,p.177] The solution to hermitian positive defi-

nite system Ax = b via the Cholesky decomposition algorithm is backward stable,

with the computed solution x̃ satisfying

(A+ dA)x̃ = b
‖dA‖
‖A‖

= O(εmachine)

for some dA ∈ Cm×m
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Iterative Methods

[1](pp.241-245) [11](pp.2-9)

The methods developed in the previous sections were of a direct nature, the

number of computations being known in advance and even the accuracy also

known in advance. But, we saw that for large systems, the direct methods were

computationally very costly.

In practice, computation of solutions to systems of equations for large and

sparse(with many elements of the matrix zero) is done by iterative methods, in

which a solution is first guessed and, if the method is convergent the guessed

solution is iterated to be closest to the exact solution by repeated iteration.

This iterative method has the benefit that it saves a lot of computational steps

especially for sparse systems, and, in additions the number of steps required varies

with the required accuracy- thus giving a better control over the computations.

It should be noted, however, that the direct methods should be preferred over

iterative methods in general and iterative methods must be used mainly for large

matrices and mainly sparse systems.

7.1 Theory of iterative methods

[11](pp.2-9)

The basic idea involved in approximating the solution to a system in iterative

methods is this:

Given a linear system Ax = b, with A invertible, suppose we can write A in

the form

A = M −N

with M invertible, and “easy to invert,” which means that M is close to being a

diagonal or a triangular matrix (perhaps by blocks). Then, Ax = b is equivalent

to Mx = Nx+ b,
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Now, we assume a first approximation, x0 and the iterate for better approxi-

mation using the above equation, that is,

x(k+1) = M−1Nx(k) +M−1b

where k ∈ N

In the above procedure, the iteration matrix G is given by I−M−1A = M−1N

By the above procedure, the solution of the original system is approximated

easily, and can be faster than the direct method of solving the system.

7.2 Jacobi Method

[11](pp.11-12) [12](pp.275-278)

Based on the general procedure for the iterative methods described above, the

general algorithm for Jacobi iterative methods for square nonsingular systems is:

Given a linear system Ax = b (with A a square invertible matrix), split it

into a diagonal matrix , D with the entries being the diagonal entries of A and a

remainder matrix, with diagonal entries zero and remaining entries equal to the

corresponding entries of A. Then, we use the similar procedure as described in

the last subsection.

More explicitly, if

A =



a11 a12 a13 ... a1n−1 a1n

a21 a22 a23 ... a2n−1 a2n

a31 a32 a33 ... a3n−1 a3n

... ... ... ... ... ...

an−11 an−12 an−13 ... an−1n−1 an−1n

an1 an2 an3 ... ann−1 ann


then

D =



a11 0 0 ... 0 0

0 a22 0 ... 0 0

0 0 a33 ... 0 0

... ... ... ... ... ...

0 0 0 ... an−1n−1 0

0 0 0 ... 0 ann


thus, in Jacobi’s method, we assume that all diagonal entries in A are nonzero,if
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not, it is so rearranged such that this is the case, we pick

M := D

As a matter of notation, we let

J := I −D−1A

which is called the Jacobi Matrix. [13] Here, the equivalent system’s matrix as

per our theory will be

G = M−1N

that is to be more specific,

G = D−1N

7.3 Gauss Seidel Method

[12](pp.275-278)

Here

A = (D − E)− F

and the splitting is M = D − E and N = F

The corresponding method to Jacobi’s method, the Gauss-Seidel, computes

the sequence (xk) using the recurrence

xk+1 = D−1(E + F )xk +D−1b k > 0

where E and F are the upper and lower triangular parts of A such that A = E+F

In practice we solve,

Dxk+1 = (E + F )xk +Bk > 0

with the iteration matrix of Gauss-Seidel, denoted by L1, with

L1 = (D − E)−1F

One of the advantages of the method of Gauss-Seidel is that it requires only half

of the memory used by Jacobi’s method [14].

The Jacobi and Gauss-Sidel methods converge, for any choice of the first

approximation, if every equation of the system satisfies the condition that the

sum of absolute values of the coefficients,
aij
aii

is almost equal to, or in at least one
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equation less than unity, that is,

n∑
j=1,i 6=j

|aij
aii
| ≤ 1 i = 1, 2, . . . , n

[12]

Example 13. An illustration of the Jacobi and Gauss-seidel methods can be

given as: Consider the system:

Ax = b

with

A =


10 −2 −1 −1

−2 10 −1 −1

−1 −1 10 −2

−1 −1 −2 10


and

b =


= 3

15

27

−9


In order to solve by iterative methods, the system can be written as:

x1 = 0.3 + 0.2x2 + 0.1x3 + 0.1x4

x2 = 1.5 + 0.2x1 + 0.1x3 + 0.1x4

x3 = 2.7 + 0.1x1 + 0.1x2 + 0.2x4

x4 = −0.9 + 0.1x1 + 0.1x2 + 0.2x3

It is easily verified that the sum of abolute value of ratio of coefficients in non

diagonal entries to that of the diagonal entries is less than unity for at least one

equation, whereby the methods of Jacobi and Gauss-Siedel would be convergent.

The tables for Gauss-Siedel and jacobi iterations are given as:

Table for Gauss-Siedel iterations
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n x1 x2 x3 x4

1 0.3 1.56 2.886 -0.1368

2 0.8869 1.9523 2.9566 -.0248

3 0.9836 1.9899 2.9924 -0.0042

4 0.9968 1.9982 2.9987 -0.0008

5 0.9994 1.9997 2.9998 -0.0001

6 0.9999 1.9999 3.0 0.0

7 1.0 2,0 3.0 0.0

Table for Jacobi iterations
n x1 x2 x3 x4

1 0.3 1.5 2.7 -0.9

2 0.78 1.74 2.7 -0.18

3 0.9 1.908 2.916 -0.108

4 0.9624 1.9608 2.9592 -0.036

5 0.9845 1.9848 2.9851 -0.0158

6 0.9939 1.9938 2.9938 -0.006

7 0.9975 1.9975 2.9976 -0.0025

8 0.9990 1.9990 2.9990 -0.0010

9 0.9996 1.9996 2.9996 -0.0004

10 0.9998 1.9998 2.9998 -0.0002

11 0.9999 1.9999 2.9999 -0.0001

12 1.0 2.0 3.0 0,0

It is clear from the above tables that the first method, or, the Gauss-Siedel method

requires only seven iterations which is equal to twelve iterations as required by

the second method, or Jacobi method.

[14]
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Conjugate Gradient Method

[11](pp.13-17)

Though the Gauss-Siedel and Jacobi methods of iteration are good for solv-

ing systems of equations, but much faster iterative methods exist and these rest

on optimizing projections onto a vector space known as Krylov subspace. This

method applies only to positive definite symmetric matices. The conjugate gra-

dient method is often implemented as an iterative algorithm, applicable to sparse

systems that are too large to be handled by a direct implementation. Large

sparse systems often arise when numerically solving partial differential equations

or optimization problems.

A quadratic form is simply a scalar, quadratic function of a vector with the

form

f(x) =
1

2
x∗Ax− b∗x+ c

with A a complex square matrix, x, b vectors, and c a scalar.

The gradient of a quadratic form is defined to be

f ′(x) =



∂
∂x1
f(x)
∂
∂x2

. . .

. . .

. . .
∂
∂xn

f(x)


where x1, x2 . . . , xn are the components of x. The gradient is a vector field that,

for a given point x, points in the direction of greatest increase of f(x). By the

usual theorem in calculus, the minimum value of the quadratic form occurs when

the gradient is equal to zero.

We have,

f ′(x) =
1

2
A∗x+

1

2
Ax− b
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for hermitian and positive definite matrix A, the above equation reduces to:

f ′(x) = Ax− b

Setting the above equation equal to zero, we obtain;

Ax = b

which is the original system to solve. Thus, it is clear that for a positive definite

hermitian matrix system, solving the system is equivalent to finding the critical

point of the quadratic form associated with the matrix.

Thus, the problem of solving a system of equations in which the matrix is

positive definite hermitian is equivalent to finding the critical points of the as-

sociated quadratic form, which can be done geometrically by methods such as

steepest descent, conjugate directions or conjugate gradients. Note that geomet-

rically, a quadratic form looks like a paraboloid, hence there exists a well defined

critical point. This is the basis of our interest in iterative methods like conjugate

gradients. We briefly discuss those.

Note that the above process of finding the critical point may get converted to

finding a hyperplane in case the matrix is singular and non-symmetric, or , may

have no solution in some cases, when the equating of the gradient of quadratic

form to zero gives us a saddle point.

8.1 Steepest Descent Method

[11](pp.13-17)

In the method of steepest descent, geometrically speaking, we start with an

arbitrary point x0 and slide down the paraboloid(quadratic form) to the critical

point. However in order to be accurate, we take series of steps x1, x2, x3 until we

reach the right critical point.

When a step is taken, the direction in which f decreases most quickly is taken,

which is the direction opposite to the gradient of f(xi). According to the equation

of gradient, this means the direction is

−f ′(xi) = b− Axi

Let x be the required solution. Then, ei = xi−x, the error determines how far

from the real solution is the iteration. Similarly, the residual ri = b−Axi denotes

how far from the correct value of b is the iteration. Thus, ri = −Aei = −f ′(xi),
thus indicating that the residual is the direction of steepest descent.
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Thus,

x1 = x0 + αr0

where x1 is the first direction that tis taken to minimize f .

A line search is a procedure that chooses α to minimize along a line. Ge-

ometerically speaking, wee are restricted to choosing a point on the intersection

of the vertical plane and the paraboloid, which is the parabola defined by the

intersection of these surfaces.

We have, α minimizes f when the directional derivative d
dα
f(x1) is equal to

zero. By chain rule,

d

dα
f(x1) = f ′(x1)∗

d

dα
x1 = f ′(x1)∗r0

Thus, setting the above expression zero, we observe that α should be chosen such

that r0 and f ′(x1) are orthogonal.

There is an intuitive reason why we should expect these vectors to be orthog-

onal at the minimum.

The slope of the parabola, which is the surface along which we are minimizing

at any point, is equal to the magnitude of the projection of the gradient onto

the line. These projections represent the rate of increase of as one traverses the

search line. is minimized where the projection is zero — where the gradient is

orthogonal to the search line.

We have [11](pp.6):

=⇒ f ′(x1) = −r1

=⇒ r∗1r0 = 0

=⇒ (b− Ax1)∗r0 = 0

=⇒ (b− A(x0 + αr0))∗r0 = 0

=⇒ (b− Ax0)∗r0 − α(Ar0)∗r0 = 0

=⇒ (b− Ax0)∗r0 = α(Ar0)∗r0

=⇒ r∗0r0 = αr∗0(Ar0)

=⇒ α =
r∗0r0

r∗0Ar0

Thus, the algorithm of steepest descent can be described as:
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ri = b− Axi

αi =
r∗i ri
r∗iAri

xi+1 = xi + αiri

The above algorithm is run till it converges.

The computational cost in the above algorithm can be reduced by premulti-

plying the last equation above both sides by −A and adding b

ri+1 = ri − αiAri

We can see that the steepest descent algorithm converges, we use the analysis

using eigenvalues and eigenvectors. Let us consider that ei is an eigenvector with

eigenvalue λ. Then, the residual is also an eigenvector, as ri = −Aei = −λei.
Thus,

ei+1 = ei +
r∗i ri
r∗iAri

ri

= ei +
ri∗ri
λri∗ri

(λei)

= 0

To analyze convergence for a little more general error term ei, we express ei

as a linear combination of orthogonal eigenvectors, whcih is guaranteed for the

matrix A by the spectral theorem. Hence, we write [11](pp.15)

ei =
n∑
j=1

εjvj

where εj is the length of each component of ei and vj are orthonormal eigenvectors.

Thus, from the orthonormality of eigenvectors, we obtain

ri = −Aei = −
∑
j

εjλjvj

=⇒ ‖ei‖2 = ei ∗ ei =
∑
j

ε2j

=⇒ ei ∗ Aei = (
∑
j

εjv
∗
j )(
∑
j

εjλjvj)
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=⇒ ei ∗ Aei =
∑
j

ε2jλj

=⇒ ‖ri‖2 = ri ∗ ri =
∑
j

ε2jλ
2
j

ri ∗ Ari =
∑
j

ε2jλ
3
j

By the mechanics of the method of steepest descent, we obtain

ei+1 = ei +
r∗i ri
r∗IAri

ri

= ei +

∑
j ε

2
jλ

2
j∑

j ε
2
jλ

3
j

ri

If it is assumed that all eigenvectors vj have a common eigenvalue λ, we obtain

ei+1 = ei +
λ2
∑

j ε
2
j

λ3
∑

j ε
2
j

(λei)

= 0

thus showing the convergence.

For an even more general analysis, when the eigenvalues corresponding to the

orthogonal vectors are unequal, we use the enegy norm defined by

‖e‖A = (e∗Ae)
1
2

Then, we have

‖ei+1‖2
A = e∗i+1Aei+1

From the mechanics of steepest descent procedure, we have:

= (e∗i + αir
∗
i )(A(ei + αiri)

Using symmetry of A:

= e∗iAei + 2αir
∗
iAei + α2

i r
∗
iAri

= ‖eA‖2 + 2
r∗i ri
r∗iAri

(−r∗i ri) +

(
r∗i ri
r∗iAri

)2

r∗iAri

= ‖ei‖2
A −

(r∗i ri)
2

r∗iAri

= ‖ei‖2
A

(
1− (r∗i ri)

2

(r∗iAri)(e
∗
iAei)

)
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= ‖ei‖2
A

(
1−

(
∑

j ε
2
jλ

2
j)

2

(
∑

j ε
2
jλ

3
j)(
∑

j ε
2
jλj)

)

= ‖ei‖2
Aω

2 ω2 = 1−
(
∑

j ε
2
jλ

2
j)

2

(
∑

j ε
2
jλ

3
j)(
∑

j ε
2
jλj)

We define

κ =
λmax
λmin

where λmax and λmin are the maximum and minimum eigenvalues as the condition

number of the matrix A. [11]

Then, we have:

‖ei‖A ≤
(
κ− 1

κ+ 1

)i
‖eo‖A

and
f(xi)− f(x)

f(x0)− f(x)
=

1
2
e∗iAei

1
2
e∗0Ae0

≤
(
κ− 1

κ+ 1

)2i

which thus guarantees us convergence provided the matrix is well conditioned.

8.2 Method of Conjugate directions

[11](pp.21-25)

Let di be the orthogonal search directions, that is vectors which approximate

the solution from the initial vector, that is,

xi+1 = xi + αidi

We set the directional derivative of the quadratic form associated to successive

iteration to zero to obtain:
d

dα
f(xi+1) = 0

=⇒ f ′(xi+1)∗
d

dα
xi+1 = 0

−r∗i+1di = 0

d∗iAei+1 = 0

By orthogonality, we have:

d∗i ei+1 = 0

=⇒ d∗i (ei + αidi) = 0
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αi = −d
∗
i ei
d∗i di

In the method of conjugate directions, we make the search directions di A-

orthogonal instead orthogonal, where di, dj are A-orthogonal if:

d∗iAdj = 0

Then, our αi becomes:

αi = −d
∗
iAei
d∗iAdi

=
d∗i ri
d∗iAdi

to prove that the procedure computes the solution in n steps, we express the

error term as a linear combination of search directions:

e0 =
n−1∑
j=0

δjdj

where to calculate δj, the following steps are used:

d∗kAe0 =
∑
j

δjd
∗
kAdj

by the A- orthogonality of the search directions,we get:

=⇒ d∗kAe0 = δkd
∗
kAdk

=⇒ δk =
d∗kAe0

d∗kAdk

=
d∗kA(e0 +

∑k−1
i=0 αidi)

d∗kAdk

=
d∗kAek
d∗kAdk

Thus, we have:

ei = e0 +
i−1∑
j=0

αjdj

=
n−1∑
j=0

αjdj −
i−1∑
j=0

αjdj

=
n−1∑
j=i

αjdj
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After n iterations, every component vanishes, thus showing the convergence.

8.3 Method of Gram-Schmidt conjugation

[11](pp.25-30)

The A-orthogonal search directions di in the method of conjugate directions

is produced by a method known as Gram-Schmidt conjugation.

The method is to take n linearly independent vectors u0, u1, . . . , un−1, take any

ui and subtract out any components that are not A- orthogonal to the previous

d vectors. The formulaic description of the process is:

d0 = u0

and

di = ui +
i−1∑
k=0

bikdk

where bik are found as:

d∗iAdj = u∗iAdj +
i−1∑
k=0

bikd
∗
kAdj

=⇒ 0 = u∗iAdj + bijd
∗
jAdj (i > j)

=⇒ bij = −u
∗
iAdj
d∗jAdj

It can be shown that the procedure of Gram-Schmidt conjugation requires

∼ n3 floating point steps, similar to the Gaussian elimination due to the process

that the old search vectors must be kept in memeory. To circumvent this crucial

problem, the method of conjugate gradients was develeoped, which is described

in next section.

It is also to be noted that the method of conjugate directions, the error terms

ei are chosen such that the value e0 +Di minimizes the energy norm ‖ei‖A where

D − i is the space spanned by the vectors {do, d1, . . . , d(i−1)}. The energy norm

can be expressed as a sum of linear sum as follows:

‖ei‖A =
n−1∑
j=1

n−1∑
k=i

δjδkd
∗
jAdk
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By the A-orthogonality of the d vectors, we obtain:

=
n−1∑
j=1

δ2
jd
∗
jAdj

The above equation proves the optimality of conjugate directions, as Each term in

this summation is associated with a search direction in its that has not yet been

traversed. that Any other vector e chosen from e0 +Di must have the same terms

in its expansion, which shows that ei must have the minimum energy norm. [11]

An important property of the method of conjugate directions is that the vec-

tors ri are orthogonal to Di. This is because:

−d∗iAej = −
n−1∑
j=i

δjd
∗
iAdj

=⇒ d∗i rj = 0

by the A-orthogonality of the di vectors.

Again, because the search directions di are constructed from the u vectors,

the subspace spanned by u0, u1, . . . , ui− 1 is also D − i and hence the residual

vectors ri are also orthogonal to u vectors as well. This can also be proven as

follows:

d∗i rj = u∗i rj +
i−1∑
k=0

bikd
∗
krj

=⇒ u∗i rj = 0

The above equations also give rise to the following identity, which would be used

in the next section:

d∗i ri = u∗i ri

As with steepest descent, the number of iterations to find the residuals can

be reduced by one as follows:

ri+1 = −Aei+1

= −A(ei + αdi)

= ri − αAdi

8.4 The conjugate gradient method

[11](pp.30-35)
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The method of conjugate gradients is the method of conjugate directions with

the search vectors built by conjugation of residuals(by setting ri = ui). Thus the

space spanned by {r0, r1, . . . , r)i− 1} is the same as Di of the last section. Thus,

we have:

r∗i rj = 0

and

Di = span{d0, Ad0, . . . , A
i−1d0}

= span{r0, Ar0, . . . , A
i−1r0}

This is key step in the conjugate gradient method but you do not explain why

Di = span{d0, Ad0, . . . , A
i−1d0} = span{r0, r1, . . . , ri−1}.

The space Di is known as Krylov subspace. It has the property that ADi is

included in Di+1. From the last section on Gram-Schmidt conjugation, we have:

r∗i rj+1 = rirj − αr∗iAdj

= αjr
∗
iAdj = r∗i rj − r∗i rj+1

=⇒ r∗iAdj =


1
αi
r∗i ri i = j

− 1
αi−1

r∗i ri i = j + 1

0 otherwise

bij =


1

αi−1

r∗i ri
d∗i−1Adi−1

i = j + 1

0 i > j + 1

Thus, most of the bij terms have disappeared which is what makes the conju-

gate gradient method better than other methods.

Thus, the summary of the method of conjugate gradients is :

d0 = r0 = b− Ax0

αi =
r∗i ri
d∗iAd

xi+1 = xi + αidi

ri+1 = ri − αiAdi

βi+1 =
r∗i+1ri+1

r∗i ri

di+1 = ri+1 + βi+1di
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[11] In theory (with exact arithmetic) converges to solution in n steps. [15]

• The bad news: due to numerical round-off errors, can take more than n

steps (or fail to converge).

• The good news: with luck (i.e., good spectrum of A), can get good approx-

imate solution in � n steps.

• Each step requires z→ Az multiplication – can exploit a variety of structure

in A.

• In many cases, never form or store the matrix A.

• Compared to direct (factor-solve) methods, CG is less reliable, data depen-

dent; often requires good (problem-dependent) preconditioner

• But, when it works, can solve extremely large systems.

At each step of the Conjugate Gradient method, the value of error vector ei

is chosen from e0 +Di, where

Di = span{ro, Ar0, A
2r0, . . . , A

i−1r0}

= span{Ae0, A
2e0, A

3e0, ldots, A
ie0}

[11](pp.33)

In addition, such Krylov spaces have the additional property that for a fixed

i , the error term has the form:

ei =

(
I +

i∑
j=1

sjA
j

)
e0

where sj are chosen that minimizes ‖ei‖A
The expression in the paranthesis can be expressed as a polynomial. That is,

ei = Pi(A)e0

where Pi is a polynomial of degree i and Pi(0) = 1. The method of conjugate

gradients chooses the polynomial when it chooses the λi coefficients. We have by

decomposing the error as a sum of orthogonal unit vectors si:

e0 =
n∑
j=1

sjjvj
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=⇒ ei =
∑
j

sjPi(λj)vj

=⇒ Aei =
∑
j

sjPi(λj)λjvj

=⇒ ‖ei‖2
A =

∑
j

s2
j [Pi(λj)]

2λj

The conjugate gradient method chooses the polynomial that minimizes the

above expression, but convergence is only as good as convergence of the worst

eigenvector. If L(A) denotes the spectrum, or the set of eigenvalues of A, we have

‖ei(A)‖2
A ≤ minPi

maxλ∈L(A)[Pi(λ)]2
∑
j

s2
jλj

= minPi
maxλ∈L(A)[Pi(λ)]2‖e0‖2

Aei

In order to minimize the above expression, Chebyshev polynomials Ti are used in

place of Pi. The Chebyshev polynomials are defined as

Ti(x) =
1

2
[(x+

√
x2 − 1)i + (x−

√
x2 − 1)i]

It can be shown that the expression for error term is minimized by taking

Pi(λ) =
Ti(

λmax+λmin−2λ
λmax−λmin

)

Ti(
λmax+λmin

λmax−λmin
)

In addition, P − i(0) = 1. The value of maximum of the numerator of the above

expression is 1 in the interval [λmax, λmin. Therefore, we have:

‖ei‖A ≤ Ti(
λmax + λmin
λmax − λmin

)−1‖e0‖A

= Ti(
k + 1

k − 1
)−1‖e0‖A

= 2

(√k + 1√
k − 1

)i

+

(√
k − 1√
k + 1

)i
−1

‖e0‖A

where k is the condition number of the matrix.

Since the second expression in the square brackets above tends to zero, there-

fore, the convergence of conjugate gradients can be expressed as

ei‖A ≤ 2

(√
k − 1√
k + 1

)i

‖e0‖A
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We note that the first step of conjugate gradients is identical to that of steepest

descent.

8.5 Preconditioned Conjugate gradient method

[11](pp.39-41)

Preconditioning refers to the process of improving the condition number of a

matrix. Suppose that a matrix B refers is hermitian and positive definite that

approximates A and is easier to invert. Then, Ax = b can be indirectly solved by

solving:

B−1Ax = B−1b

If the condition number of the matrix B−1A is very less as compared to that of

A, or, if the eigenvalues of B−1A are better clustered than those of A, then the

computational cost associated to the problem can be reduced by solving B−1Ax.

But, the main difficulty with this method would be that positive definiteness of

neither A nor B ensures the positive definiteness of B−1A. To circumvent this

difficulty, the help of Cholesky decomposition is taken, whereby, we have a matrix

M for every positive definite matrix B, such that MM∗ = B. No

for every eigenvector v of B−1A with eigenvalue λ, we have:

sec(M−1AM−∗)(M∗v) = (M∗M−∗)M−1Av = tiB−1Av = λM∗v

whereby M∗v is the eigenvector of M−1AM−∗ corresponding to λ. [11](pp.39)

Hence, the above method suggests solving the original positive definite system

Ax = b by solving

M−1AM−∗x̂ = M−1b , x̂M∗x

which is first solved for x̂ and then for x. In this case, M−1AM−∗ is hermitian

and positive definite and x̂ can be found by steepest descent or the method

of conjugate gradients. The method of using conjugate gradient to solve this

equation is known as the transformed preconditioned conjugate gradient method,

described as:

d̂0 = r̂0 = M−1b−M−1AM−∗x̂0

αi =
r̂∗i r̂i

d̂∗iM
−1AM−∗d̂i

x̂i+1 = x̂i + αid̂i

r̂i+1 = r̂i − αid̂i
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b̂i+1 =
r̂∗i+1r̂i+1

r̂∗i r̂i

d̂i+1 = r̂i+1 + bi+1d̂i

The above method requires computation of M , where MM∗ = B, which can be

eliminated by making some substitutions: We set r̂i = M−1ri and d̂i = M∗Di and

using the formulae x̂i = M∗xi and M−∗M−1 = B−1, we obtain the untransformed

preconditioned conjugate gradient method as follows:

ro = b− Ax0

d0 = B−1r0

αi =
r∗iB

−1ri
d∗iAdi

xi+1 = xi + αidi

ri+1 = ri − αiAdi

bi+1 =
r∗i+1B

−1ri+1

r∗iB
−1ri

di+1 = B−1ri+1 + bi+1di

We see that computations involving the matrix M was avoided in the untrans-

formed* method. [11](pp.40)

The effectiveness of the preconditioned method rely on the effectiveness of the

conditioner B which in turn is related to the condition number of B−1A and by

the clustering of its eigenvalues.
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Conclusion

In our quest to discuss the implementation and performance of direct and iter-

ative methods and possibly come to a conclusion about certain methods. We

discovered a lot and acquired a lot of information. In Chapter 3 we discussed

the SVD and the QR factorisation. We explored their concept, explored their

computations in examples. We gave you insight into using methods such as

Gram-Schmidt or-thogonalization, Householder transformations, or Givens rota-

tions. We then explored their computational costs. Hence giving you information

about the implementation and the performance of such methods. We explored

the benefits and disadvantages of each method. Exploring this helped us gain

insight into implementation and performance of such methods. In Chapter 4, the

same was done by exploring the general system of equations. The case where

an equation is non-square was explored. The methods to implement in such

cases such as QR factorization and SVD was discussed also. We discussed their

performances and their implementation. We found that we were faced with an

issue of speed versus accuracy. Hence leading us to further discuss performance

and implementation. An issue which naturally lead us to chapter 5. A chapter

where we discussed stability and conditioning of numerical problems. This was

essential, as we needed it to explore what we mainly wanted to focus on. This

was Direct and iterative methods for a square matrix. It was to gain knowledge

to help us discuss the performance of an implemented method in depth. In this

chapter we simultaneously managed to also discuss floating point arithmetic and

how it was linked or related to stability and conditioning. This therefore gave

us an idea into the effects of implementation of problems on computer and its

effects on the accuracy of the answer received. A major help with regards to

our quest in finding out about the performance on computers with regards to

accuracy. We also found out that, we needed to use well conditioned algorithms

to be able to get a more accurate answer. Overall aiding in our understanding

regarding performance of an algorithm used to solve a system of equation. In this
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same chapter we were also able to embark naturally to chapter 6 because it was

observed that the use of least squares problem gives A ∗ Ax = A ∗ b. Meaning it

actually reduces the original system to solving Ax = b for square matrices. And

this is the square system that you solve. After this chapter, we were equipped to

not only explore theory and implementation of direct and iterative methods. We

were now equipped to analyze its accuracy, stability and its computational costs.

Thus giving us insight into exploring more stable methods and insight into into

solving almost any system of equation for an nxn matrix for large n. helping us

find out just how much less computation was involved with iterative methods as

opposed to direct methods etc. Thus, we have discussed the various intricacies

involved in solving a general system of equations , how we reduce them to solving

systems of square matrices which discussed topics such as least squares, normal

equations, SVD, pseudoinverses, QR Decomposition , the complications involved

in solving them on computers, including conditioning, accuracy and stability, fur-

ther complications in solving equations on a large scale and methods to overcome

them, which included various methods of direct solutions like LU Decomposition

and associated Gaussian elimination as well as Cholesky decomposition, and also

iterative methods like Jacobi, Gauss-Siedel for non-sparse matrices and conjugate

directions, steepest descent and conjugate gradients for sparse matrices. We also

discussed stability of the various algorithms involved. As you know, this the-

sis was based on the implementation and the performance of such methods.

We have given you an insight into their performances, and which methods are

appropriate to use depending on the nature of your problem. In the jist, it is

difficult to say beforehand which method needs to be taken for solving a given set

of equations. Rather, as you can see for your self, it requires deep analysis of the

given conditions and stability pertaining to its computation and the nature of the

method, whether sparse or not before deciding the method to solve a given set of

equations. We hope this study has made a right introduction in this direction.

And we hope you have gained insight in the performance and implementation of

direct and iterative methods. In a proposed future work, we could plan to do

some implementations and simulations on real examples so as to better under-

stand the theory in practice. Preferbly on a programme such as matlab, where

the accuracy and the time taken to solve, if given to you after calculation on

matlab.
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